Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.954
Filtrar
1.
Small ; : e2400380, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564784

RESUMO

Thermal annealing (TA) of colloidal quantum dot (CQD) films is considered an important process for recent high-performing CQD solar cells (SCs) due to its beneficial effects on CQD solids, including enhanced electrical conductivity, denser packing of CQD films, and the removal of organic residues and solvents. However, the conventional TA for CQDs, which requires several  minutes, leads to hydroxylation and oxidation on the CQD surface, resulting in the formation of trap states and a subsequent decline in SC performance. To address these challenges, this study introduces a flashlight annealing (FLA) technique that significantly reduces the annealing time to the millisecond scale. Through the FLA approach, it successfully suppressed hydroxylation and oxidation, resulting in decreased trap states within the CQD solids while simultaneously preserving their charge transport properties. As a result, CQD SCs treated with FLA exhibited a notable improvement, achieving an open-circuit voltage of 0.66 V compared to 0.63 V in TA-treated devices, leading to an increase in power conversion efficiency from 12.71% to 13.50%.

2.
J Appl Clin Med Phys ; : e14342, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590112

RESUMO

BACKGROUND: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS: We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS: Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION: The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.

3.
Med Phys ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569159

RESUMO

BACKGROUND: Dosimetry in pre-clinical FLASH studies is essential for understanding the beam delivery conditions that trigger the FLASH effect. Resolving the spatial and temporal characteristics of proton pencil beam scanning (PBS) irradiations with ultra-high dose rates (UHDR) requires a detector with high spatial and temporal resolution. PURPOSE: To implement a novel camera-based system for time-resolved two-dimensional (2D) monitoring and apply it in vivo during pre-clinical proton PBS mouse irradiations. METHODS: Time-resolved 2D beam monitoring was performed with a scintillation imaging system consisting of a 1 mm thick transparent scintillating sheet, imaged by a CMOS camera. The sheet was placed in a water bath perpendicular to a horizontal PBS proton beam axis. The scintillation light was reflected through a system of mirrors and captured by the camera with 500 frames per second (fps) for UHDR and 4 fps for conventional dose rates. The raw images were background subtracted, geometrically transformed, flat field corrected, and spatially filtered. The system was used for 2D spot and field profile measurements and compared to radiochromic films. Furthermore, spot positions were measured for UHDR irradiations. The measured spot positions were compared to the planned positions and the relative instantaneous dose rate to equivalent fiber-coupled point scintillator measurements. For in vivo application, the scintillating sheet was placed 1 cm upstream the right hind leg of non-anaesthetized mice submerged in the water bath. The mouse leg and sheet were both placed in a 5 cm wide spread-out Bragg peak formed from the mono-energetic proton beam by a 2D range modulator. The mouse leg position within the field was identified for both conventional and FLASH irradiations. For the conventional irradiations, the mouse foot position was tracked throughout the beam delivery, which took place through repainting. For FLASH irradiations, the delivered spot positions and relative instantaneous dose rate were measured. RESULTS: The pixel size was 0.1 mm for all measurements. The spot and field profiles measured with the scintillating sheet agreed with radiochromic films within 0.4 mm. The standard deviation between measured and planned spot positions was 0.26 mm and 0.35 mm in the horizontal and vertical direction, respectively. The measured relative instantaneous dose rate showed a linear relation with the fiber-coupled scintillator measurements. For in vivo use, the leg position within the field varied between mice, and leg movement up to 3 mm was detected during the prolonged conventional irradiations. CONCLUSIONS: The scintillation imaging system allowed for monitoring of UHDR proton PBS delivery in vivo with 0.1 mm pixel size and 2 ms temporal resolution. The feasibility of instantaneous dose rate measurements was demonstrated, and the system was used for validation of the mouse leg position within the field.

4.
Materials (Basel) ; 17(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612007

RESUMO

(1) Background: The retention of intraradicular posts is an important factor for the prognosis of endodontically treated teeth. The purpose of this study was to evaluate the push-out bond strength (PBS) of the posts relating to their diameter and region of the root. (2) Methods: A total of 40 premolar teeth (decoronated and root canal-filled) were divided into four groups (n = 10). After post-space preparation, different sizes (1.0, 1.2, 1.5, and 2.0 mm) of glass fiber posts were luted with resin cement into the root canals. After placement, 2 mm thick slices were cut from the roots according to their apical, middle, and coronal regions (n = 116). Push-out tests were carried out in a universal testing machine on each slice. A statistical evaluation of the data was applied. (3) Results: When comparing the diameter, the 2.0 mm posts had the highest PBS (111.99 ± 10.40 N), while the 1.0 mm posts had the lowest PBS (99.98 ± 8.05 N). Divided by the surface of the bonded area, the average PBS value was the highest for the 1.0 mm posts (18.20 ± 1.67 MPa) and the lowest for the 2.0 mm posts (12.08 ± 1.05 MPa). (4) Conclusions: Within the limitations of the study, when comparing the regions of the roots, no significant differences were found among the PBS values of the three regions (p = 0.219). When comparing the diameters, significant differences were shown between the PBS values of the four groups (p = 0.023 and p = 0.003, respectively).

5.
Small Methods ; : e2400015, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607951

RESUMO

Nowadays, the extensively used lead sulfide (PbS) quantum dot (QD) hole transport layer (HTL) relies on layer-by-layer method to replace long chain oleic acid (OA) ligands with short 1,2-ethanedithiol (EDT) ligands for preparation. However, the inevitable significant volume shrinkage caused by this traditional method will result in undesired cracks and disordered QD arrangement in the film, along with adverse increased defect density and inhomogeneous energy landscape. To solve the problem, a novel method for EDT passivated PbS QD (PbS-EDT) HTL preparation using small-sized benzoic acid (BA) as intermediate ligands is proposed in this work. BA is substituted for OA ligands in solution followed by ligand exchange with EDT layer by layer. With the new method, smoother PbS-EDT films with more ordered and closer QD packing are gained. It is demonstrated stronger coupling between QDs and reduced defects in the QD HTL owing to the intermediate BA ligand exchange. As a result, the suppressed nonradiative recombination and enhanced carrier mobility are achieved, contributing to ≈20% growth in short circuit current density (Jsc) and a 23.4% higher power conversion efficiency (PCE) of 13.2%. This work provides a general framework for layer-by-layer QD film manufacturing optimization.

6.
Int J Pediatr Otorhinolaryngol ; 179: 111931, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555811

RESUMO

OBJECTIVE: Asses the efficacy of a Vestibular-balance rehabilitation program to minimize or reverse balance disability in children with sensorineural hearing loss. METHOD: Forty-five hearing-impaired children with balance deficits (i.e., variable degrees of sensorineural hearing loss or auditory neuropathy). Thirty-five were rehabilitated with cochlear implants, and ten with hearing aids. Their age ranged from 4 to 10 years old. A Pre-rehab evaluation was done using questionnaires, neuromuscular evaluation, vestibular and balance office testing, and vestibular lab testing (using cVEMP and caloric test). Customized balances, as well as vestibular rehabilitation exercises, have been applied for three months. That was followed by post-rehab assessment, including the Arabic DHI questionnaire, PBS, BESS, HTT, and DVA test. RESULTS: There was a statistically significant difference in all measured parameters (including the Arabic DHI questionnaire, PBS, BESS, HTT, and DVA test) after rehabilitation. CONCLUSIONS: Vestibular-balance rehabilitation intervention positively impacts vestibular and balance functions in hearing-impaired children.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva Neurossensorial , Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto , Criança , Humanos , Pré-Escolar , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/reabilitação , Testes Calóricos
7.
Molecules ; 29(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542869

RESUMO

Huperzine A (HUP) plays a crucial role in Alzheimer's therapy by enhancing cognitive function through increased cholinergic activity as a reversible acetylcholinesterase (AChE) inhibitor. Despite some limitations being seen in AChE inhibitors, ongoing research remains dedicated to finding innovative and more effective treatments for Alzheimer's disease. To achieve the goal of the discovery of potential HUP analogues with improved physicochemical properties, less toxic properties, and high biological activity, many in silico methods were applied. Based on the acetylcholinesterase-ligand complex, an e-pharmacophore model was developed. Subsequently, a virtual screening involving a collection of 1762 natural compounds, sourced from the PubChem database, was performed. This screening yielded 131 compounds that exhibited compatibility with the established pharmacophoric hypothesis. These selected ligands were then subjected to molecular docking within the active site of the 4EY5 receptor. As a result, we identified four compounds that displayed remarkable docking scores and exhibited low free binding energy to the target. These top four compounds, CID_162895946, CID_44461278, CID_44285285, and CID_81108419, were submitted to ADMET prediction and molecular dynamic simulations, yielding encouraging findings in terms of their pharmacokinetic characteristics and stability. Finally, the molecular dynamic simulation, cross-dynamic correlation matrix, free energy landscape, and MM-PBSA calculations demonstrated that two ligands from the selected ligands formed very resilient complexes with the enzyme acetylcholinesterase, with significant binding affinity. Therefore, these two compounds are recommended for further experimental research as possible (AChE) inhibitors.


Assuntos
Alcaloides , Doença de Alzheimer , Inibidores da Colinesterase , Sesquiterpenos , Humanos , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Ligantes
8.
Sci Rep ; 14(1): 4550, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402305

RESUMO

Parabens (PBs) are a class of preservatives commonly used in cosmetics and pharmaceuticals. Studies have shown that these compounds may act as endocrine disruptors, affecting thyroxine levels in humans. PBs with longer chain substituents, such as butylparaben (BuP), are less prone to complete biotransformation and are therefore more likely to accumulate in the body. In this study, the effect of high-dose exposure to BuP on thyroid microstructure, ultrastructure, and function was investigated in rats. 50 mg/kg bw per day of BuP was injected subcutaneously into the neck of rats for 4 weeks. Rat thyroid weight, microstructure, and ultrastructure were determined, and the levels of thyroid sodium/iodide symporter (NIS), serum thyroid hormones, and thyroid autoantibodies were measured. The human thyroid cell line was used to study the mechanism of BuP on thyroid epithelial cells. The weight of the thyroid gland of BuP-exposed rats was increased, the structure of the thyroid follicles was irregular and damaged, the mitochondria and rough endoplasmic reticulum were swollen and damaged, and the microvilli at the tip of the epithelium were reduced and disappeared. Serum total T3, total T4, free T3, and free T4 were decreased in BuP-exposed rats, and TSH, peroxidase antibody, and thyroglobulin antibody were increased. In vitro, BuP decreased the level of NIS in thyroid epithelial cells, inhibited proliferation and viability, and induced apoptosis in a dose-dependent manner. This study demonstrated that high-dose exposure to BuP induced structural, ultrastructural, and functional impairment to the thyroid gland of rats, which may be one of the factors leading to hypothyroidism.


Assuntos
Hipotireoidismo , Parabenos , Ratos , Animais , Humanos , Parabenos/toxicidade , Parabenos/química , Hormônios Tireóideos , Hipotireoidismo/induzido quimicamente , Tiroxina , Tireotropina
9.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399897

RESUMO

Poly(1,4-butylene succinate) (PBS) is a promising sustainable and biodegradable synthetic polyester. In this study, we synthesized PBS-based copolyesters by incorporating 5-20 mol% of -O2CC6H4CO2- and -OCH2CH2O- units through the polycondensation of succinic acid (SA) with 1,4-butanediol (BD) and bis(2-hydroxyethyl) terephthalate (BHET). Two different catalysts, H3PO4 and the conventional catalyst (nBuO)4Ti, were used comparatively in the synthesis process. The copolyesters produced using the former were treated with M(2-ethylhexanoate)2 (M = Mg, Zn, Mn) to connect the chains through ionic interactions between M2+ ions and either -CH2OP(O)(OH)O- or (-CH2O)2P(O)O- groups. By incorporating BHET units (i.e., -O2CC6H4CO2- and -OCH2CH2O-), the resulting copolyesters exhibited improved ductile properties with enhanced elongation at break, albeit with reduced tensile strength. The copolyesters prepared with H3PO4/M(2-ethylhexanoate)2 displayed a less random distribution of -O2CC6H4CO2- and -OCH2CH2O- units, leading to a faster crystallization rate, higher Tm value, and higher yield strength compared to those prepared with (nBuO)4Ti using the same amount of BHET. Furthermore, they displayed substantial shear-thinning behavior in their rheological properties due to the presence of long-chain branches of (-CH2O)3P=O units. Unfortunately, the copolyesters prepared with H3PO4/M(2-ethylhexanoate)2, and hence containing M2+, -CH2OP(O)(OH)O-, (-CH2O)2P(O)O- groups, did not exhibit enhanced biodegradability under ambient soil conditions.

10.
Healthcare (Basel) ; 12(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391803

RESUMO

BACKGROUND: Air pollution can cause numerous health problems and increase the need for medicines to treat and prevent asthma in affected areas. There is limited evidence about the association between airborne particles with a diameter of 2.5 micrometres or smaller (PM2.5) and asthma medicine usage. This study examined the potential association between the levels of PM2.5 and the supply of prescription asthma medicines in the Australian Capital Territory (ACT), Australia, during the severe bushfire season between November 2019-January 2020. METHODS: Daily data was obtained from an ACT air quality monitoring station from November 2019 to January 2020 (study period) and November 2018 to January 2019 (control period, no bushfire). The number and types of government-funded asthma medicine prescriptions were obtained from the Services Australia (government) website by searching under 'Pharmaceutical Benefits Scheme Item Reports' and using relevant item codes during the study and control periods. RESULTS: The medians for PM2.5 levels for the study period were significantly higher than those for the control period (p < 0.001). There were increases in the number of dispensed prescriptions of short-acting beta-2 agonists (SABA), inhaled corticosteroids, and long-acting beta-2 agonists combined with inhaled corticosteroids. The greatest difference was seen with the inhaled corticosteroids: a 138% increase. CONCLUSIONS: The increase in the number of dispensed asthma prescriptions during the bushfire season should be used to inform the stock holdings of these medicines in preparation for future events to ensure access to lifesaving asthma medicines.

11.
Anal Chim Acta ; 1287: 342125, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182395

RESUMO

BACKGROUND: MicroRNA-21 has been determined to be the only microRNA overexpressed in 11 types of solid tumors, making it an excellent candidate as a biomarker for disease diagnosis and therapy. Photoelectrochemical (PEC) biosensors have been widely used for quantification of microRNA-21. However, most PEC biosensing processes still suffer from some problems, such as the difficulty of avoiding the influence of interferents in complex matrices and the false-positive signals. There is a pressing need for establishing a sensitive and stable PEC method to detect microRNA-21. RESULTS: Herein, a nicking endonuclease-mediated rolling circle amplification (RCA)-assisted CRISPR/Cas12a PEC biosensor was fabricated for ultrasensitive detection of microRNA-21. The p-p type heterojunction PbS QDs/Co3O4 polyhedra were prepared as the quencher, thus the initial PEC signal attained the "off" state. Furthermore, the target was specifically identified and amplified by the RCA process. Then, its product single-stranded DNA S1 activated the cis- and trans-cleavage abilities of CRISPR/Cas12a, leading to almost all of the PbS QDs/Co3O4 polyhedra to leave the electrode surface, the p-n semiconductor quenching effect to be disrupted, and the signal achieving the "super-on" state. This pattern of PEC signal changed from "off" to "on" eliminated the interference of false-positive signals. The proposed PEC biosensor presented a satisfactory linear relationship ranging from 1 fM to 10 nM with a detection limit of 0.76 fM (3 Sb/N). SIGNIFICANCE AND NOVELTY: With innovatively synthesized PbS QDs/Co3O4 polyhedra as the effective quencher for PEC signal, the CRISPR/Cas12a dual-cleavage PEC biosensor possessed excellent selectivity, stability and repeatability. Furthermore, the detection of various miRNAs can be realized by changing the relevant base sequences in the constructed PEC biosensor. It also provides a powerful strategy for early clinical diagnosis and biomedical research.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Cobalto , Sistemas CRISPR-Cas/genética , MicroRNAs/química , Fotoquímica , Técnicas Biossensoriais/métodos
12.
J Colloid Interface Sci ; 660: 192-202, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241867

RESUMO

Interfacial solar steam generation is considered a promising approach to address energy and drinking water shortages. However, designing efficient light-absorbing and photothermal-converting materials remains challenging. In this study, we describe a detailed method for synthesising a three-dimensional (3D) hierarchical oxygen defect-rich WO3/Ag/PbS/Ni foam (termed WO3-x/Ag/PbS/NF) composite to realise efficient exciton separation and enhanced photothermal conversion. The 3D heterogeneous ternary photothermal material combines the individual benefits of WO3-x, Ag and PbS, improving charge transfer and promoting photogenerated electron-hole pairs. This enhances light absorption and energy conversion. Theoretical calculations indicate that the increased photothermal conversion efficiency primarily results from the heterojunction between Ag, WO3-x and PbS, facilitating exciton separation and electron transfer. Consequently, the WO3-x/Ag/PbS/NF solar evaporator exhibits exceptional light absorption (98% within the sunlight spectrum), a high evaporation rate of 1.90 kg m-2h-1 under 1 sun and a light-to-heat conversion efficiency of 94%. The WO3-x/Ag/PbS/NF evaporator also exhibits excellent capabilities in seawater desalination and wastewater treatment. This approach introduces a synergistic concept for creating novel multifunctional light-absorbing materials suitable for various energy-related applications.

13.
Int J Biol Macromol ; 259(Pt 2): 129319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211920

RESUMO

Blending poly(butylene succinate) (PBS) with another biodegradable polymer, polyglycolic acid (PGA), has been demonstrated to improve the barrier performance of PBS. However, blending these two polymers poses a challenge because of their incompatibility and large difference of their melting temperatures. In this study, we synthesized epoxidized soybean oil branched cardanol ether (ESOn-ECD), a bio-based and environmentally friendly compatibilizer, and used it to enhance the compatibility of PBS/PGA blends. It was demonstrated that the terminal carboxyl/hydroxyl groups of PBS and PGA can react with ESOn-ECD in situ, leading to branching and chain extension of PBS and PGA. The addition of ESO3-ECD to the blend considerably diminished the dispersed phase of PGA. Specifically, in comparison to the PBS/PGA blend without a compatibilizer, the diameter of the PGA phase decreased from 2.04 µm to 0.45 µm after the addition of 0.7 phr of ESO3-ECD, and the boundary between the two phases became difficult to distinguish. Additionally, the mechanical properties of the blends were improved after addition of ESO3-ECD. This research expands the potential applications of these materials and promotes the use of bio-based components in blend formulations.


Assuntos
Butileno Glicóis , Éteres , Fenóis , Poliésteres , Polímeros , Óleo de Soja , Ácido Poliglicólico
14.
Mycoses ; 67(1): e13667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914666

RESUMO

BACKGROUND: Clinical severity scores, such as acute physiology, age, chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA), Pitt Bacteremia Score (PBS), and European Confederation of Medical Mycology Quality (EQUAL) score, may not reliably predict candidemia prognosis owing to their prespecified scorings that can limit their adaptability and applicability. OBJECTIVES: Unlike those fixed and prespecified scorings, we aim to develop and validate a machine learning (ML) approach that is able to learn predictive models adaptively from available patient data to increase adaptability and applicability. METHODS: Different ML algorithms follow different design philosophies and consequently, they carry different learning biases. We have designed an ensemble meta-learner based on stacked generalisation to integrate multiple learners as a team to work at its best in a synergy to improve predictive performances. RESULTS: In the multicenter retrospective study, we analysed 512 patients with candidemia from January 2014 to July 2019 and compared a stacked generalisation model (SGM) with APACHE II, SOFA, PBS and EQUAL score to predict the 14-day mortality. The cross-validation results showed that the SGM significantly outperformed APACHE II, SOFA, PBS, and EQUAL score across several metrics, including F1-score (0.68, p < .005), Matthews correlation coefficient (0.54, p < .05 vs. SOFA, p < .005 vs. the others) and the area under the curve (AUC; 0.87, p < .005). In addition, in an independent external test, the model effectively predicted patients' mortality in the external validation cohort, with an AUC of 0.77. CONCLUSIONS: ML models show potential for improving mortality prediction amongst patients with candidemia compared to clinical severity scores.


Assuntos
Bacteriemia , Candidemia , Humanos , Escores de Disfunção Orgânica , APACHE , Estudos Retrospectivos , Candidemia/diagnóstico , Estudos de Viabilidade , Prognóstico , Aprendizado de Máquina , Curva ROC , Unidades de Terapia Intensiva
15.
Adv Sci (Weinh) ; 11(6): e2307169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044286

RESUMO

The realization of a controllable transparent conducting system with selective light transparency is crucial for exploring many of the most intriguing effects in top-illuminated optoelectronic devices. However, the performance is limited by insufficient electrical conductivity, low work function, and vulnerable interface of traditional transparent conducting materials, such as tin-doped indium oxide. Here, it is reported that two-dimensional (2D) titanium carbide (Ti3 C2 Tx ) MXene film acts as an efficient transparent conducting electrode for the lead sulfide (PbS) colloidal quantum dots (CQDs) photodiode with controllable near infrared transmittance. The solution-processed interface engineering of MXene and PbS layers remarkably reduces the interface defects of MXene/PbS CQDs and the carrier concentration in the PbS layer. The stable Ti3 C2 Tx /PbS CQDs photodiodes give rise to a high specific detectivity of 5.51 × 1012  cm W-1  Hz1/2 , a large dynamic response range of 140 dB, and a large bandwidth of 0.76 MHz at 940 nm in the self-powered state, ranking among the most exceptional in terms of comprehensive performance among reported PbS CQDs photodiodes. In contrast with the traditional photodiode technologies, this efficient and stable approach opens a new horizon to construct widely used infrared photodiodes with CQDs and MXenes.

16.
J Appl Clin Med Phys ; 25(2): e14186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37974385

RESUMO

PURPOSE: Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs). METHODS AND MATERIALS: Under an IRB-approved study, CPs were created retrospectively for 10 bilateral HN patients previously treated with NCPs maintaining identical beam geometry of the original plan but excluding couch rotations. Plan robustness to the inter-fractional variation (IV) of both plans was evaluated through the Dose Volume Histograms (DVH) of weekly quality assurance CT (QACT) sets (39 total). In addition, delivery efficiency for both plans was compared using total treatment time (TTT) and beam-on time (BOT). RESULTS: No significant differences in plan quality were observed in terms of clinical target volume (CTV) coverage (D95) or organ-at-risk (OAR) doses (p > 0.4 for all CTVs and OARs). No significant advantage of NCPs in the robustness to IV was found over CP, either. Changes in D95 of QA plans showed a linear correlation (slope = 1.006, R2  > 0.99) between NCP and CP for three CTV data points (CTV1, CTV2, and CTV3) in each QA plan (117 data points for 39 QA plans). NCPs showed significantly higher beam delivery time than CPs for TTT (539 ± 50 vs. 897 ± 142 s; p < 0.001); however, no significant differences were observed for BOT. CONCLUSION: NCPs are not more robust to IV than CPs when treating bilateral HN tumors with pencil-beam scanning proton beams. CPs showed plan quality and robustness similar to NCPs while reduced treatment time (∼6 min). This suggests that CPs may be a more efficient planning technique for bilateral HN cancer proton therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Terapia com Prótons/métodos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
17.
ACS Appl Mater Interfaces ; 16(1): 915-923, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38145458

RESUMO

The interface VOC loss between the active layer and the hole transport layer (HTL) of lead sulfide colloidal quantum dot (PbS-CQD) solar cells is a significant factor influencing the efficiency improvement of PbS colloidal quantum dot solar cells (PbS-CQDSCs). Currently, the most advanced solar cells adopt organic P-type HTLs (PbS-EDT) via solid-state ligand exchange with 1,2-ethanedithiol (EDT) on the CQD top active layer. However, EDT is unable to altogether remove the initial ligand oleic acid from the quantum dot surface, and its high reactivity leads to cracks in the HTL film caused by volume contractions, which inevitably results in significant VOC loss. These flaws prompted this research to develop a method involving hybrid organic ligand exchange using 3-mercaptopropionic acid (MPA) and 1,2-EDT (PbS-Hybrid) to overcome these drawbacks of VOC loss. The results indicated that the new exchange strategy improved the quality of the HTL film and benefited from the enhanced passivation of the quantum dot surface and better alignment of energy levels, and the average VOC of PbS-Hybrid devices is increased by approximately 25 mV compared to control devices. With the enhanced VOC, the average power conversion efficiency (PCE) of the devices is improved by 10%, with the highest PCE reaching 13.24%.

18.
ACS Appl Mater Interfaces ; 15(50): 58573-58582, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059485

RESUMO

Lead sulfide (PbS) colloidal quantum dots (CQDs) for photodetectors (PDs) have garnered great attention due to their potential use as low-cost, high-performance, and large-area infrared focal plane arrays. The prevailing device architecture employed for PbS CQD PDs is the p-i-n structure, where PbS CQD films treated with thiol molecules, such as 1,2-ethanedithiol (EDT), are widely used as p-type layers due to their favorable band alignment. However, PbS-EDT films face a critical challenge associated with low film quality, resulting in many defects that curtail the device performance. Herein, a controlled oxidization process is developed for better surface passivation of the PbS-EDT transport layer. The dark current density (Jd) of PbS CQD PDs based on optimized PbS-EDT layer shows a dramatic decrease by nearly 2 orders of magnitude. The increase of carrier lifetime and suppression of carrier recombination via controlled oxidation in PbS-EDT CQDs were confirmed by transient absorption spectra and electrochemical impedance spectra. The device based on the optimized PbS-EDT hole transport layer (HTL) exhibits a specific detectivity (D*) that is 3.4 times higher compared to the control device. Finally, the CQD PD employing oxidization PbS-EDT CQDs is integrated with a thin film transistor (TFT) readout circuit, which successfully accomplishes material discrimination imaging, material occlusion imaging, and smoke penetration imaging. The controlled oxidization strategy verifies the significance of surface management of CQD solids and is expected to help advance infrared optoelectronic applications based on CQDs.

19.
J Agric Food Chem ; 71(49): 19832-19844, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048420

RESUMO

Ten dimeric procyanidin (PC) analogs were hemisynthesized from catechin or epicatechin and from five different aldehydes using the same mechanism that produces the important acetaldehyde-mediated adducts of proanthocyanidins (PAs) and anthocyanins in red wine. Protein precipitation capacity (PPC), octanol-water partition coefficient (log P) and stability of the PC analogs were determined. The emphasis was on the PPC because it has been shown to correlate with anthelmintic activity against gastrointestinal nematodes in ruminants and with other beneficial bioactivities in animals, as well. The PPC of PC analogs was greatly improved compared to natural PC dimers, but the capacity was not as great as that of a PC trimer or epigallocatechin gallate. The log P of PC analogs varied from hydrophobic to hydrophilic depending on the intramolecular linkage. Great variation was observed in stabilities of PC analogs in phosphate buffered saline, and the mixtures of degradation products were characterized using high-resolution mass spectrometry.


Assuntos
Catequina , Proantocianidinas , Vinho , Animais , Proantocianidinas/química , Catequina/química , Antocianinas/análise , Bebidas Alcoólicas/análise , Vinho/análise , Fosfatos/análise
20.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958639

RESUMO

Protein structure prediction continues to pose multiple challenges despite outstanding progress that is largely attributable to the use of novel machine learning techniques. One of the widely used representations of local 3D structure-protein blocks (PBs)-can be treated in a similar way to secondary structure classes. Here, we present a new approach for predicting local conformation in terms of PB classes solely from amino acid sequences. We apply the RMSD metric to ensure unambiguous future 3D protein structure recovery. The selection of statistically assessed features is a key component of the proposed method. We suggest that ML input features should be created from the statistically significant predictors that are derived from the amino acids' physicochemical properties and the resolved structures' statistics. The statistical significance of the suggested features was assessed using a stepwise regression analysis that permitted the evaluation of the contribution and statistical significance of each predictor. We used the set of 380 statistically significant predictors as a learning model for the regression neural network that was trained using the PISCES30 dataset. When using the same dataset and metrics for benchmarking, our method outperformed all other methods reported in the literature for the CB513 nonredundant dataset (for the PBs, Q16 = 81.01%, and for the DSSP, Q3 = 85.99% and Q8 = 79.35%).


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Aminoácidos/química , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...